3.5.24 \(\int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx\) [424]

3.5.24.1 Optimal result
3.5.24.2 Mathematica [A] (verified)
3.5.24.3 Rubi [A] (verified)
3.5.24.4 Maple [B] (verified)
3.5.24.5 Fricas [A] (verification not implemented)
3.5.24.6 Sympy [F(-1)]
3.5.24.7 Maxima [B] (verification not implemented)
3.5.24.8 Giac [F]
3.5.24.9 Mupad [F(-1)]

3.5.24.1 Optimal result

Integrand size = 30, antiderivative size = 365 \[ \int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx=-\frac {i \sqrt {2} e^{5/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{a^{3/2} d}+\frac {i \sqrt {2} e^{5/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{a^{3/2} d}+\frac {i e^{5/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt {2} a^{3/2} d}-\frac {i e^{5/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt {2} a^{3/2} d}+\frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}} \]

output
1/2*I*e^(5/2)*ln(a-2^(1/2)*a^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/(e*sec 
(d*x+c))^(1/2)+cos(d*x+c)*(a+I*a*tan(d*x+c)))/a^(3/2)/d*2^(1/2)-1/2*I*e^(5 
/2)*ln(a+2^(1/2)*a^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^( 
1/2)+cos(d*x+c)*(a+I*a*tan(d*x+c)))/a^(3/2)/d*2^(1/2)-I*e^(5/2)*arctan(1-2 
^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))*2^(1 
/2)/a^(3/2)/d+I*e^(5/2)*arctan(1+2^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/ 
a^(1/2)/(e*sec(d*x+c))^(1/2))*2^(1/2)/a^(3/2)/d+4*I*e^2*(e*sec(d*x+c))^(1/ 
2)/a/d/(a+I*a*tan(d*x+c))^(1/2)
 
3.5.24.2 Mathematica [A] (verified)

Time = 4.03 (sec) , antiderivative size = 338, normalized size of antiderivative = 0.93 \[ \int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx=\frac {e (e \sec (c+d x))^{3/2} (\cos (d x)+i \sin (d x))^2 \left (\cos (d x) (4 i \cos (c)-4 \sin (c))+4 (\cos (c)+i \sin (c)) \sin (d x)+\frac {2 \left (\text {arctanh}\left (\frac {\sqrt {1-i \cos (c)+\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}{\sqrt {-1-i \cos (c)-\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}}\right ) \sqrt {-1-i \cos (c)-\sin (c)} \sqrt {1+i \cos (c)-\sin (c)}-\text {arctanh}\left (\frac {\sqrt {1+i \cos (c)-\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}{\sqrt {-1+i \cos (c)+\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}}\right ) \sqrt {1-i \cos (c)+\sin (c)} \sqrt {-1+i \cos (c)+\sin (c)}\right ) (\cos (2 c)+i \sin (2 c)) \sqrt {i+\tan \left (\frac {d x}{2}\right )}}{\sqrt {1+\cos (2 c)+i \sin (2 c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}\right )}{d (a+i a \tan (c+d x))^{3/2}} \]

input
Integrate[(e*Sec[c + d*x])^(5/2)/(a + I*a*Tan[c + d*x])^(3/2),x]
 
output
(e*(e*Sec[c + d*x])^(3/2)*(Cos[d*x] + I*Sin[d*x])^2*(Cos[d*x]*((4*I)*Cos[c 
] - 4*Sin[c]) + 4*(Cos[c] + I*Sin[c])*Sin[d*x] + (2*(ArcTanh[(Sqrt[1 - I*C 
os[c] + Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt 
[I + Tan[(d*x)/2]])]*Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[1 + I*Cos[c] - Sin[ 
c]] - ArcTanh[(Sqrt[1 + I*Cos[c] - Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[- 
1 + I*Cos[c] + Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[1 - I*Cos[c] + Sin[c] 
]*Sqrt[-1 + I*Cos[c] + Sin[c]])*(Cos[2*c] + I*Sin[2*c])*Sqrt[I + Tan[(d*x) 
/2]])/(Sqrt[1 + Cos[2*c] + I*Sin[2*c]]*Sqrt[I - Tan[(d*x)/2]])))/(d*(a + I 
*a*Tan[c + d*x])^(3/2))
 
3.5.24.3 Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 378, normalized size of antiderivative = 1.04, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3981, 3042, 3976, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 3981

\(\displaystyle \frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}}-\frac {e^2 \int \sqrt {e \sec (c+d x)} \sqrt {i \tan (c+d x) a+a}dx}{a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}}-\frac {e^2 \int \sqrt {e \sec (c+d x)} \sqrt {i \tan (c+d x) a+a}dx}{a^2}\)

\(\Big \downarrow \) 3976

\(\displaystyle \frac {4 i e^4 \int \frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e \left (a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{a d}+\frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {4 i e^4 \left (\frac {\int \frac {a+\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{a d}+\frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {4 i e^4 \left (\frac {\frac {\int \frac {1}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}+\frac {\int \frac {1}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{a d}+\frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {4 i e^4 \left (\frac {\frac {\int \frac {1}{-\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}-1}d\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\int \frac {1}{-\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}-1}d\left (\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {a} \sqrt {e \sec (c+d x)}}+1\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{a d}+\frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {4 i e^4 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{a d}+\frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {4 i e^4 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{\sqrt {e} \left (\frac {a}{e}-\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {e} \left (\frac {a}{e}+\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{a d}+\frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {4 i e^4 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\int \frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{\sqrt {e} \left (\frac {a}{e}-\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {e} \left (\frac {a}{e}+\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{a d}+\frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {4 i e^4 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\int \frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} e}+\frac {\int \frac {\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {a} e}}{2 e}\right )}{a d}+\frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {4 i e^4 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{2 \sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{a d}+\frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}}\)

input
Int[(e*Sec[c + d*x])^(5/2)/(a + I*a*Tan[c + d*x])^(3/2),x]
 
output
((4*I)*e^4*((-(ArcTan[1 - (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sq 
rt[a]*Sqrt[e*Sec[c + d*x]])]/(Sqrt[2]*Sqrt[a]*Sqrt[e])) + ArcTan[1 + (Sqrt 
[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])]/(S 
qrt[2]*Sqrt[a]*Sqrt[e]))/(2*e) - (-1/2*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sq 
rt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a + I*a*Tan 
[c + d*x])]/(Sqrt[2]*Sqrt[a]*Sqrt[e]) + Log[a + (Sqrt[2]*Sqrt[a]*Sqrt[e]*S 
qrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a + I*a*Ta 
n[c + d*x])]/(2*Sqrt[2]*Sqrt[a]*Sqrt[e]))/(2*e)))/(a*d) + ((4*I)*e^2*Sqrt[ 
e*Sec[c + d*x]])/(a*d*Sqrt[a + I*a*Tan[c + d*x]])
 

3.5.24.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3976
Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-4*b*(d^2/f)   Subst[Int[x^2/(a^2 + d^2*x^4), x] 
, x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b, d, 
e, f}, x] && EqQ[a^2 + b^2, 0]
 

rule 3981
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)])^(n_), x_Symbol] :> Simp[2*d^2*(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + 
 f*x])^(n + 1)/(b*f*(m + 2*n))), x] - Simp[d^2*((m - 2)/(b^2*(m + 2*n))) 
Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[ 
{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] 
 && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (IntegersQ[n, m + 
1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]
 
3.5.24.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1089 vs. \(2 (285 ) = 570\).

Time = 16.18 (sec) , antiderivative size = 1090, normalized size of antiderivative = 2.99

method result size
default \(\text {Expression too large to display}\) \(1090\)

input
int((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
1/2/d*e^2*(e*sec(d*x+c))^(1/2)/(tan(d*x+c)-I)/a/(a*(1+I*tan(d*x+c)))^(1/2) 
/(1/(cos(d*x+c)+1))^(1/2)/(cos(d*x+c)+1)*(8*(1/(cos(d*x+c)+1))^(1/2)*cos(d 
*x+c)+2*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+ 
c)+1))^(1/2))*cos(d*x+c)-2*sin(d*x+c)*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)- 
1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-2*arctanh(1/2*(cos(d*x+c)+sin( 
d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)-2*sin(d*x+c) 
*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^( 
1/2))+8*(1/(cos(d*x+c)+1))^(1/2)+2*I*cos(d*x+c)*arctanh(1/2*(cos(d*x+c)+si 
n(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))+arctanh(1/2*(-cos(d*x 
+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-tan(d*x+c)*arct 
anh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2) 
)-arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^ 
(1/2))-tan(d*x+c)*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/ 
(cos(d*x+c)+1))^(1/2))-I*sec(d*x+c)*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1) 
/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))+I*arctanh(1/2*(-cos(d*x+c)+sin(d 
*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))+I*tan(d*x+c)*arctanh(1/2 
*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-I*tan 
(d*x+c)*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c 
)+1))^(1/2))+2*I*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/ 
(cos(d*x+c)+1))^(1/2))*sin(d*x+c)-sec(d*x+c)*arctanh(1/2*(-cos(d*x+c)+s...
 
3.5.24.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 539, normalized size of antiderivative = 1.48 \[ \int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx=-\frac {{\left (a^{2} d \sqrt {\frac {4 i \, e^{5}}{a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (\frac {a^{2} d \sqrt {\frac {4 i \, e^{5}}{a^{3} d^{2}}} + 2 \, {\left (e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{e^{2}}\right ) - a^{2} d \sqrt {\frac {4 i \, e^{5}}{a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (-\frac {a^{2} d \sqrt {\frac {4 i \, e^{5}}{a^{3} d^{2}}} - 2 \, {\left (e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{e^{2}}\right ) - a^{2} d \sqrt {-\frac {4 i \, e^{5}}{a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (\frac {a^{2} d \sqrt {-\frac {4 i \, e^{5}}{a^{3} d^{2}}} + 2 \, {\left (e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{e^{2}}\right ) + a^{2} d \sqrt {-\frac {4 i \, e^{5}}{a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (-\frac {a^{2} d \sqrt {-\frac {4 i \, e^{5}}{a^{3} d^{2}}} - 2 \, {\left (e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{e^{2}}\right ) + 8 \, {\left (-i \, e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} - i \, e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{2 \, a^{2} d} \]

input
integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fric 
as")
 
output
-1/2*(a^2*d*sqrt(4*I*e^5/(a^3*d^2))*e^(I*d*x + I*c)*log((a^2*d*sqrt(4*I*e^ 
5/(a^3*d^2)) + 2*(e^2*e^(2*I*d*x + 2*I*c) + e^2)*sqrt(a/(e^(2*I*d*x + 2*I* 
c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))/e^2) - 
 a^2*d*sqrt(4*I*e^5/(a^3*d^2))*e^(I*d*x + I*c)*log(-(a^2*d*sqrt(4*I*e^5/(a 
^3*d^2)) - 2*(e^2*e^(2*I*d*x + 2*I*c) + e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 
 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))/e^2) - a^2 
*d*sqrt(-4*I*e^5/(a^3*d^2))*e^(I*d*x + I*c)*log((a^2*d*sqrt(-4*I*e^5/(a^3* 
d^2)) + 2*(e^2*e^(2*I*d*x + 2*I*c) + e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1) 
)*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))/e^2) + a^2*d* 
sqrt(-4*I*e^5/(a^3*d^2))*e^(I*d*x + I*c)*log(-(a^2*d*sqrt(-4*I*e^5/(a^3*d^ 
2)) - 2*(e^2*e^(2*I*d*x + 2*I*c) + e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))* 
sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))/e^2) + 8*(-I*e^ 
2*e^(2*I*d*x + 2*I*c) - I*e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e 
^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))*e^(-I*d*x - I*c)/(a^2*d)
 
3.5.24.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate((e*sec(d*x+c))**(5/2)/(a+I*a*tan(d*x+c))**(3/2),x)
 
output
Timed out
 
3.5.24.7 Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 778 vs. \(2 (273) = 546\).

Time = 0.47 (sec) , antiderivative size = 778, normalized size of antiderivative = 2.13 \[ \int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

input
integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxi 
ma")
 
output
-1/4*(2*I*sqrt(2)*e^2*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1, sqrt(2)*si 
n(1/2*d*x + 1/2*c) + 1) + 2*I*sqrt(2)*e^2*arctan2(sqrt(2)*cos(1/2*d*x + 1/ 
2*c) + 1, -sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*I*sqrt(2)*e^2*arctan2(sqr 
t(2)*cos(1/2*d*x + 1/2*c) - 1, sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*I*sqr 
t(2)*e^2*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) - 1, -sqrt(2)*sin(1/2*d*x + 
1/2*c) + 1) + 2*sqrt(2)*e^2*arctan2(sqrt(2)*sin(1/2*d*x + 1/2*c) + sin(d*x 
 + c), sqrt(2)*cos(1/2*d*x + 1/2*c) + cos(d*x + c) + 1) - 2*sqrt(2)*e^2*ar 
ctan2(-sqrt(2)*sin(1/2*d*x + 1/2*c) + sin(d*x + c), -sqrt(2)*cos(1/2*d*x + 
 1/2*c) + cos(d*x + c) + 1) + I*sqrt(2)*e^2*log(2*sqrt(2)*sin(d*x + c)*sin 
(1/2*d*x + 1/2*c) + 2*(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1)*cos(d*x + c) + co 
s(d*x + c)^2 + 2*cos(1/2*d*x + 1/2*c)^2 + sin(d*x + c)^2 + 2*sin(1/2*d*x + 
 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 1) - I*sqrt(2)*e^2*log(-2*sqr 
t(2)*sin(d*x + c)*sin(1/2*d*x + 1/2*c) - 2*(sqrt(2)*cos(1/2*d*x + 1/2*c) - 
 1)*cos(d*x + c) + cos(d*x + c)^2 + 2*cos(1/2*d*x + 1/2*c)^2 + sin(d*x + c 
)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 1) + sqr 
t(2)*e^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt( 
2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*e^ 
2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos( 
1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + sqrt(2)*e^2*log(2 
*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*...
 
3.5.24.8 Giac [F]

\[ \int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx=\int { \frac {\left (e \sec \left (d x + c\right )\right )^{\frac {5}{2}}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac 
")
 
output
integrate((e*sec(d*x + c))^(5/2)/(I*a*tan(d*x + c) + a)^(3/2), x)
 
3.5.24.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx=\int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}} \,d x \]

input
int((e/cos(c + d*x))^(5/2)/(a + a*tan(c + d*x)*1i)^(3/2),x)
 
output
int((e/cos(c + d*x))^(5/2)/(a + a*tan(c + d*x)*1i)^(3/2), x)